MATH 512 HOMEWORK 1

Due Friday, Feb 15.

Problem 1. Show that I is normal if and only if the dual filter is closed under diagonal intersections.

Problem 2. Suppose that U is a κ -complete normal ultrafilter on κ . Show that U contains all clubs of κ , and that every set in U is stationary.

Problem 3. Let κ be a regular uncountable cardinal and $\kappa < \lambda$. Show that $\{x \in \mathcal{P}_{\kappa}(\lambda) \mid x \cap \kappa \in \kappa\}$ is a club in $\mathcal{P}_{\kappa}(\lambda)$. Show that the club filter of $\mathcal{P}_{\kappa}(\lambda)$ is closed under diagonal intersections. Suppose that $\lambda < \tau$. Show that:

- if S is stationary in $\mathcal{P}_{\kappa}(\lambda)$, then $\{x \in \mathcal{P}_{\kappa}(\tau) \mid x \cap \lambda \in S\}$ is stationary in $\mathcal{P}_{\kappa}(\tau)$,
- if S^* is stationary in $\mathcal{P}_{\kappa}(\tau)$, then $\{x \cap \lambda \mid x \in S^*\}$ is stationary in $\mathcal{P}_{\kappa}(\lambda)$,

Problem 4. Let $V \subset V[G]$ and suppose that $V \models "C$ is club in κ ". Show that $V[G] \models "C$ is club in κ " (even if κ is no longer a cardinal)

Problem 5. Let P_S be the poset to shoot a club through S, where S is a stationary subset of ω_1 . Show that every stationary subset of S remains stationary in the generic extension.

Recall that $\langle C_{\alpha} \mid \alpha \in \operatorname{Lim}(\kappa^+) \rangle$ is a \Box_{κ} sequence iff:

- (1) each C_{α} is a club subset of α ,
- (2) for each α , if $cf(\alpha) < \kappa$, then $o.t.(C_{\alpha}) < \kappa$,
- (3) for each α , if $\beta \in \text{Lim}(C_{\alpha})$, then $C_{\alpha} \cap \beta = C_{\beta}$.

Problem 6. Suppose that $\langle C_{\alpha} | \alpha \in Lim(\kappa^+) \rangle$ is a \Box_{κ} sequence. Show that there is no club $C \subset \kappa$ such that for all $\alpha, C \cap \alpha = C_{\alpha}$.

Hint: look at the order type of initial segments of such a C.